Google

PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

[index] Algebra::MPolynomial / Algebra::MPolynomial::Monomial / Algebra::MPolynomialFactorization / Algebra::Groebner

Algebra::MPolynomial

(Class of Multi-variate Polynomial Ring)

This class expresses the multi-variate polynomial ring over arbitrary ring. For creating the actual class, use the class method ::create or Algebra.MPolynomial(), giving the coefficient ring.

File Name:

  • m-polynomial.rb

SuperClass:

  • Object

Included Modules:

  • Enumerable
  • Comparable
  • Algebra::Groebner

Associated Function:

Algebra.MPolynomial(ring [, obj0 [, obj1 [, ...]]])

Same as ::create(ring [, obj0[, obj1[, ...]]]).

Class Methods:

::create(ring [, obj0 [, obj1 [, ...]]])

Creates a multi-variate polynomial ring class over the coefficient ring expressed by the class: ring.

The objects obj0, obj1, ... are reserved and represent variables. They are only to utilize for the names of variables (for to_s ) and the distinction.

The return value of this method is a sub-class of Algebra::MPolynomial. This class has class-methods: ground and vars, which return the coefficient ring ring and an array of variables.

The variables represented by objects obj0, obj1, ... can be able to obtain as :var(obj0), var(obj1),... So, vars == [var(obj0), var(obj1), ...].

The order of each variable is: obj0 > obj1 > ..., and the order of monomials is determined by ::set_ord.

Example: Polynomial ring over Integer

require "m-polynomial"
P = Algebra::MPolynomial.create(Integer, "x", "y", "z")
x, y, z = P.vars
p((-x + y + z)*(x + y - z)*(x - y + z))
#=> -x^3 + x^2y + x^2z + xy^2 - 2xyz + xz^2 - y^3 + y^2z + yz^2 - z^3
p P.ground #=> integer
::vars([obj0 [, obj1 [, ...]]])

When no parameter is designated, it returns the array of all variables, already reserved.

Example:

P = Algebra.MPolynomial(Integer, "x", "y", "z")
p P.vars #=> [x, y, z]

When only one parameter of String is designated , splits the string into identifiers and reserves them, which represent variables. The string of "AN ALPHABET + SOME DIGITS" can be an identifier.

If the object has been already reserved, no new reservation is done. The return value of this method is an array of variables corresponding to the objects.

Example:

P = Algebra.MPolynomial(Integer)
x, y, z, w = P.vars("a0b10cd")
p P.vars #=> [a0, b10, c, d]
p [x, y, z, w] #=> [a0, b10, c, d]

Otherwise, reserve objects obj0, obj1, ... which represent variables. If the object has been already reserved, no reservation is done. The return value of this method is an array of variables corresponding to the objects.

Example:

P = Algebra.MPolynomial(Integer)
p P.vars("x", "y", "z") #=> [x, y, z]
::mvar([obj0 [, obj1 [, ...]]])

When no parameter is designated, it returns the array of all variables, already reserved.

Otherwise, reserve objects obj0, obj1, ... which represent variables. If the object has been already reserved, no reservation is done. The return value of this method is an array of variables corresponding to the objects.

::to_ary

Returns [self, *vars].

Example: Define MPolynomial ring and variables simulteniously

P, x, y, z, w = Algebra.MPolynomial(Integer, "a", "b", "c", "d")
::var(obj)

Returns the variable, which is represented by obj.

Example:

P = Algebra.MPolynomial(Integer, "X", "Y", "Z")
x, y, z = P.vars
P.var("Y") == y #=> true
::variables

Returns the array of reserved objects, which represent variables.

::indeterminate(obj)

Same as ::var.

::zero?

Returns true if self is zero.

::zero

Returns zero.

::unity

Returns unity.

::set_ord(ord [, v_ord])

Sets the order of monomials as ord which is Symbol of ordering type. The possible designations are :lex (lexicographic order (default)), :grlex (graded lexicographic order), :grevlex (graded reverse lexicographic order).

The order of variables is the order of reservation. By the array v_ord, we can transform the order.

Example: the order of x, y, z = P.var("xyz")

require "m-polynomial"
P = Algebra.MPolynomial(Integer)
x, y, z = P.vars("xyz")
f = -5*x**3 + 7*x**2*z**2 + 4*x*y**2*z + 4*z**2

P.set_ord(:lex)
p f #=> -5x^3 + 7x^2z^2 + 4xy^2z + 4z^2

f.method_cash_clear
P.set_ord(:grlex)
p f #=> 7x^2z^2 + 4xy^2z - 5x^3 + 4z^2

f.method_cash_clear
P.set_ord(:grevlex)
p f #=> 4xy^2z + 7x^2z^2 - 5x^3 + 4z^2

f.method_cash_clear
P.set_ord(:lex, [2, 1, 0]) # z > y > x
p f #=> 7x^2z^2 + 4z^2 + 4xy^2z - 5x^3

See ::with_ord.

::get_ord

Returns the monomial order. (:lex, :grlex, :grevlex)

::with_ord(ord [, v_ord[ [, array_of_polys]])

Executes the block with monomial ordering ord and order of variables v_ord. These ordering are available only in the block.(See ::set_ord.) When the array of polyomials array_of_polys is given, for each of them, method_cash_clear is invoked before the execution. (This is not a thread-safe block.)

Example:

require "m-polynomial"
P = Algebra.MPolynomial(Integer)
x, y, z = P.vars("xyz")
f = -5*x**3 + 7*x**2*z**2 + 4*x*y**2*z + 4*z**2

P.with_ord(:lex, nil, [f]) do
  p f    #=> -5x^3 + 7x^2z^2 + 4xy^2z + 4z^2
  p f.lt #=> -5x^3
end

P.with_ord(:grlex, nil, [f]) do
  p f    #=> 7x^2z^2 + 4xy^2z - 5x^3 + 4z^2
  p f.lt #=> 7x^2z^2
end

P.with_ord(:grevlex, nil, [f]) do
  p f    #=> 4xy^2z + 7x^2z^2 - 5x^3 + 4z^2
  p f.lt #=> 4xy^2z
end

P.with_ord(:lex, [2, 1, 0], [f]) do # z > y > x
  p f    #=> 7x^2z^2 + 4z^2 + 4xy^2z - 5x^3
  p f.lt #=> 7x^2z^2
end
::monomial(ind[, c])

Returns the monomial of multi-degree ind and coefficient c. (Algebra::MPolynomial::Monomial is not extend.) If c is omitted, it is assumed to be the unity.

Methods:

monomial(ind[, c])

Same as ::monomial

constant?

Retruns true if self is a constant.

monomial?

Returns true if self is a monomial.

zero?

Returns true if self is zero.

zero

Returns zero.

unity

Retruns unity.

method_cash_clear

Clears the cashes of methods.

In this library, some results of methods are stored so as not to do same calculations. When the order of monomials is changed, we must clear the cashes.

The methods which have cashes are following: lc, lm, lt, rt, multideg.

Example:

P = Algebra.MPolynomial(Integer)
x, y, z = P.vars("xyz")
f = -5*x**3 + 7*x**2*z**2 + 4*x*y**2*z + 4*z**2
P.set_ord(:lex)
p f.lt #=> -5x^3
P.set_ord(:grlex)
p f.lt #=> -5x^3
f.method_cash_clear
p f.lt #=> 7x^2z^2
==(other)

Returns true if self is equal to other.

<=>(other)

Returns positive if self is greater than other.

+(other)

Returns the sum of self and other.

-(other)

Returns the difference of self from other.

*(other)

Returns the product of self and other.

**(n)

Returns the n-th power of self.

/(other)

Returns the quotient of self by other. other must be constant.

divmod(f0 [, f1 [,...]])

Returns the array [the array of quotients, the remainder] by f0, f1,....

P = Algebra.MPolynomial(Integer)
x, y = P.vars("xy")
f = x**2*y + x*y**2 + y**2
f0 = x*y - 1
f1 = y**2 - 1
p f.divmod(f0, f1) #=> [[x + y, 1], x + y + 1]
p f % [f0, f1]     #=> x + y + 1
%(others)

Returns the remainder of self by polynomials others. It is equal to divmod(*others)[1].

multideg

Returns the multiple degree as an array.

Example: in lex order,

P = Algebra.MPolynomial(Integer)
x, y, z = P.vars("xyz")
f = 4*x*y**2*z + 4*z**2 - 5*x**3*y + 7*x**2*z**2
p f.multideg #=> [3, 1]
totdeg

Returns the total degree.

Example:

f = 4*x*y**2*z + 4*z**2 - 5*x**3*y + 7*x**2*z**2
p f.totdeg   #=> 4
deg

Same as multideg.

lc

Returns the leading coefficient.

Example: in lex order,

f = 4*x*y**2*z + 4*z**2 - 5*x**3*y + 7*x**2*z**2
p f.lc       #=> -5
lm

Returns the leading monomial. The return value is extended by MPolynomial::Monomial.

Example: in lex order,

f = 4*x*y**2*z + 4*z**2 - 5*x**3*y + 7*x**2*z**2
p f.lm       #=> x^3y
lt

Returns leading term. This is equal to lc * lm.

Example: in lex order

f = 4*x*y**2*z + 4*z**2 - 5*x**3*y + 7*x**2*z**2
p f.lt       #=> -5x^3y
rt

Returns the rest term. This is equal to self - lt.

Example: in lex order,

f = 4*x*y**2*z + 4*z**2 - 5*x**3*y + 7*x**2*z**2
p f.rt       #=> 4*z**2 - 5*x**3*y + 7*x**2*z**2
to_s

Return the representation of String. To change the format of expression, use display_type. The values which are able to designate to display_type is: :norm (default) and :code.

Example:

P = Algebra.MPolynomial(Integer)
x, y, z = P.vars("xyz")
f = -5*x**3 + 7*x**2*z**2 + 4*x*y**2*z + 4*z**2
p f #=> -5x^3 + 7x^2z^2 + 4xy^2z + 4z^2
P.display_type = :code
p f #=> -5x**3 + 7x**2z**2 + 4xy**2z + 4z**2
project(ring[, vs]){|c, ind| ... }

Returns the sum over ring of the evaluations of ... for each monomial of multi-degree ind and coefficient c. If vs is omitted, it is assumed to be ::vars.

Example:

require "m-polynomial"
require "rational"
P = Algebra::MPolynomial(Integer, "x", "y", "z")
PQ = Algebra::MPolynomial(Rational, "x0", "y0", "z0")
x, y, z = P.vars
x0, y0, z0 = PQ.vars
f = x**2 + 2*x*y - z**3
p f.project(PQ) {|c, ind| Rational(c) / (ind[0] + 1)}
                        #=> 1/3x0^2 + x0y0 - z0^3
p f.convert_to(PQ)      #=> x0^2 + 2x0y0 - z0^3
evaluate(obj0[, [obj1, [obj2,..]]])

Reterns the value entering obj0, obj1, obj2,... for each value. This equivalent to project(ground, [obj0, obj1, obj2,..]){|c, ind| c}.

Example:

require "m-polynomial"
P = Algebra::MPolynomial(Integer, "x", "y", "z")
x, y, z = P.vars
f = x**2 + 2*x*y - z**3
p f.evaluate(1, -1, -1) #=> 0 (in Integer)
p f.evaluate(y, z, x)   #=> -x^3 + y^2 + 2yz (in P)
call(obj0[, [obj1, [obj2,..]]])

Same as evaluate.

convert_to(ring)

Returns the polynomial the one converted on ring. This is equivalent to project(ring){|c, ind| c}.

Algebra::MPolynomial::Monomial

(Module of Monomial)

The return value of lt and lm is extended by this module.

Methods:

divide?(other)

Returns true if self is divided by other, which is assumed to be a monomial.

/(other)

Returns the quotient of self by other, which is assumed to be a monomial.

prime_to?(other)

Returns true if self is prime to other, which is assumed to be a monomial.

lcm(other)

Returns the least common multiple of self and other, which is assumed to be a monomial.

divide_or?(other0, other1)

Returns the same value as divide?(other0.lcm(other1)).

Algebra::MPolynomialFactorization

(Module of Factorization)

The module of factorization of polynomials.

File Name:

m-polynomial-factor.rb

Methods:

factorize

Returns the factorization.

The following type can be factorized:

  • Integer
  • Rational
  • prime field

Algebra::Groebner

(Module of Groebner Basis)

File Name:

  • groebner-basis.rb
  • groebner-basis-coeff.rb

Class Methods:

Groebner.basis(f)

Returns the array of reduced Groebner basis from the array of basis f. Equivalent to Groebner.basis(Groebner.minimal_basis(Groebner.basis_159A(f))).

Example:

require "m-polynomial"
require "rational"
P = Algebra.MPolynomial(Rational)
P.set_ord :grevlex
x, y, z = P.vars("xyz")
f1 = x**2 + y**2 + z**2 -1
f2 = x**2 + z**2 - y
f3 = x - z
b = Groebner.basis([f1, f2, f3])
p b #=> [y^2 + y - 1, z^2 - 1/2y, x - z]
Groebner.basis_159A(f)

Returns the array of Groebner basis from the array of basis f.

Groebner.minimal_basis(f)

Returns the array of minimal Groebner basis from the array of Groebner basis f.

Groebner.reduced_basis(f)

Returns the array of reduced Groebner basis from the array of minimal Groebner basis f.

Groebner.basis_coeff(f)

Returns the array of Groebner basis from the array of basis f and the array of coefficients to express them.

Example:

require "m-polynomial"
require "rational"
P = Algebra.MPolynomial(Rational)
P.set_ord :grevlex
x, y, z = P.vars("xyz")
f1 = x**2 + y**2 + z**2 -1
f2 = x**2 + z**2 - y
f3 = x - z
fs = [f1, f2, f3]
c, b = Groebner.basis_coeff(fs)
p b #=> [y^2 + y - 1, z^2 - 1/2y, x - z]
p c #=> [[1, -1, 0], [0, 1/2, -1/2x - 1/2z], [0, 0, 1]]
for i in 0..2
  p c[i].inner_product(fs) == b[i] #=> true
end
Groebner.basis?(f)

Return true if f is an array of Groebner basis.

Groebner.minimal_basis?(f)

Return true if f is an array of minimal Groebner basis.

Groebner.reduced_basis?(f)

Return true if f is an array of reduced Groebner basis.

Methods:

S_par(other)

Returns the S-pair of self and other.

Example:

(x**2*y + y**2 + z**2 -1).S_pair(x**2*z + z**2 - y)
  #=> y^2z + y^2 - yz^2 + z^3 - z
divmod_s(f1[, f2[, f3...]])

Returns a array [[q1, q2, q3, ...], r] of the array of quotients (coefficients of division) and the remainder of division of self by basis f1, f2, f3, ....

We convert f1, f2, f3, ... into Groebner basis and make the division. So divmod(f1, f2, ...).last == 0 is equivalent to that self is in the ideal (f1, f2, ...).

Example:

require "m-polynomial"
require "rational"
P = Algebra.MPolynomial(Rational)
P.set_ord :grevlex
x, y, z = P.vars("xyz")
f1 = x**2 + y**2 + z**2 -1
f2 = x**2 + z**2 - y
f3 = x - z
fs = [f1, f2, f3]
f = x**3 + y**3 + z**3
c, r = f.divmod_s(*fs)
p r #=> yz + 2y - 1
p c #=> [y - 1, -y + z + 1, x^2]
p f == c.inner_product(fs) + r #=> true